
OWASP Application
Security Verification

Standard

February 2019 Update

Jim Manico
• Former OWASP Board

Member
• OWASP ASVS Lead Author
• OWASP Proactive Controls

Lead Author
• OWASP Cheatsheet Series

Project Manager
• Kauai, Hawaii Resident

COPYRIGHT ©2019 MANICODE SECURITY

3

Analysis

Design

ImplementationTesting

Operations

Secure
SDLC

Microsoft SDL for waterfall

Microsoft SDL for Agile

The Open Web Application Security Project (OWASP) is a
501(c)(3) worldwide not-for-profit charitable
organization focused on improving the security of
software.

Our mission is to make software security visible, so that
individuals and organizations worldwide can make
informed decisions about true software security risks.

Everyone is free to participate in OWASP and all of our
materials are available under a free and open software
license. You'll find everything about OWASP linked from
our wiki and current information on our OWASP Blog.

https://owasp.org

https://owasp.org/

The OWASP Top Ten The Good
§ Project members include a variety of security experts

from around the world who have shared their
expertise to produce this list.

– Andrew van der Stock
– Neil Smithline
– Torsten Gigler
– Brian Glas

§ Significant public comments and conversation on Top
Ten 2017 choices
https://github.com/OWASP/Top10/tree/master/2017

§ Frequently cited application security awareness
document

https://github.com/OWASP/Top10/tree/master/2017

The OWASP Top Ten Struggles
§ The OWASP Ten has a history of vendor shenanigans

that dates back a decade.
§ The OWASP Top 10 list is meant to spread awareness

regarding Web Security issues. It is not a standard. I'm
looking at you PCI-DSS and others who incorrectly list
it as so.

§ The OWASP Top Ten is not a comprehensive list of
web security risks.

§ The OWASP Top Ten does not go into detail about how
to fix or prevent these issues.

So what standard can we use for
web applications and webservice

security?

OWASP ASVS 4.0!

§ First application security
standard by developers for
developers!

§ Defines three risk levels with
200+ controls.

§ Similar to ISO 27034
§ To be released in under 2

weeks!
§ https://github.com/OWASP/A

SVS/tree/master/4.0/en

https://github.com/OWASP/ASVS/tree/master/4.0/en

What will be new in 4.0?
§ Moving all of authentication requirements inline with

NIST 800-63-3
§ Changing session requirements to acknowledge new

world of JWT's and stateless mechanisms
§ Removing mobile requirements due to MASVS
§ Lots of small edits and clarifications on requirement

language
§ Colapsing many requirements that duplicate concepts
§ Triaging hundreds of comments from the field
§ Moving to markdown for primary text
§ Moar GDPR
§ https://github.com/OWASP/ASVS/tree/master/4.0/en

https://github.com/OWASP/ASVS/tree/master/4.0/en

Application Security Verification Standard 4.0

Application Security Verification Standard 4.0
Level 1: Opportunistic

•Minimum required for all
software
•Mostly automatable
• Easy to discover
• Straight forward developer

fixes
• Not enough for high risk

apps

Application Security Verification Standard 4.0
Level 2: Standard

• Suitable for sensitive data
• About 75% testable
• Somewhat test automatable
• Moderate to complex

developer security
challenges

Application Security Verification Standard 4.0
Level 3: Advanced

• Suitable for critical apps
• Mostly testable, but many

more manual verifications
required

• Not amenable to
automation

• Significant developer
challenges

How to fork and use ASVS
Building the Application Security
Verification Standard into your SDLC

ASVS Anti-Patterns

§ Security leaders mailing the ASVS document to the
development teams tealling them "security says you
have to follow this now. Good luck!"

§ Avoid engaging developers on ASVS items before
making it policy

§ Using ASVS out of the box without customizing it for
your organization

§ Setting ASVS as a standard in way where it's never
used, never read or never considered. But given to
customers.

ASVS Effective Adoption

§ The goal of ASVS adoption is for developers to
actively use it in their development and
architectural work every day.

§ Work with developers early on in forking ASVS.

§ Let developers lead in version 1 as to what
requirements will be accepted by the team.

§ Like any complex legislation, just get it in there
and modify it over time after version 1.

Writing Unit Tests Using ASVS

Write unit tests to validate
your application each and
every build

Allows penetration testers
to concentrate on difficult to
automate tests, such as
business logic flaws, access
control issues, and things
you forgot in the unit tests

Writing Integration Tests

Integration tests can be written
using Postman, Selenium,
OWASP Zap API

v1 Architecture, design and
threat modelling
Design security in

Ensure that a verified application satisfies the following high level
requirements:

• At level 1, components of the application are identified and
have a reason for being in the app

• At level 2, the architecture has been defined and the code
adheres to the architecture

• At level 3, the architecture and design is in place and is effective
at achieving necessary security goals

v2 Authentication

Authentication is the act of establishing identity.

Ensure that a verified application satisfies the following
high level requirements:

• Verifies the digital identity of the sender of a
communication.

• Ensures that only those authorized are able to
authenticate and credentials are transported in a
secure manner.

• Changed in 4.0 to be in alignment with NIST 800-63b

v3 Session management
Ensure that a verified application satisfies the
following high level session management
requirements:

• Sessions are unique to each individual and
cannot be guessed or shared

• Sessions are invalidated when no longer
required and timed out during periods of
inactivity

• This category was changed significantly to
address new forms of stateless session
management (JWT's)

Access control
Acting as admin since 1998

v4 Access Control
Ensure that a verified application satisfies the
following high level requirements:

• Business requirements for access control
policy are understood.

• Users are associated with a well-defined
set of roles and privileges.

• Role and permission metadata is
protected from replay or tampering.

• Post 4.0 release new access control
methods such as capabilities need to be
addressed.

Malicious input
handling
Inject all the things

v5 Validation, Sanitization and
Encoding

Ensure that a verified application satisfies the
following high level requirements:

• All input is validated to be correct and fit
for the intended purpose.

• The various and complex forms of XSS
defense are addressed for UI security.

• The various forms of injection are handled
correctly.

v6 Cryptography at rest
Ensure that a verified application satisfies the
following high level requirements:

• Proper data classification is achieved
• Strong cryptographic architectures and

algorithims are in use
• Suitable random number generator is used

when randomness is required.
• That access to keys is managed in a secure

way with secrets management.

v7 Error handling and logging
High quality logs will often contain sensitive data, and
must be protected as per local data privacy laws or
directives. This should include:

• Not collecting or logging sensitive information if not
specifically required.

• Ensuring all logged information is handled securely
and protected as per its data classification.

• Ensuring that logs are not forever, but have an
absolute lifetime that is as short as possible.

v8 Data protection
Ensure that a verified application satisfies the
following high level data protection requirements:

• Confidentiality: Data should be protected from
unauthorised observation or disclosure both in
transit and when stored.

• Integrity: Data should be protected being
maliciously created, altered or deleted by
unauthorized attackers.

• Availability: Data should be available to authorized
users as required

v9 Communications security

Ensure that a verified application satisfies the
following high level requirements:

• TLS or strong encryption is always used, regardless
of the sensitivity of the data being transmitted

• The most recent, leading configuration advice is
used to enable and order preferred algorithms and
ciphers

• Weak or soon to be deprecated algorithms and
ciphers are ordered as a last resort

• Deprecated or known insecure algorithms and
ciphers are disabled

v10 Malicious Code
Ensure that a verified application satisfies the
following high level requirements:

• Malicious activity is handled securely and properly
as to not affect the rest of the application.

• Do not have time bombs or other time based
attacks built into them

• Do not “phone home” to malicious or
unauthorized destinations

• Applications do not have back doors, Easter eggs,
salami attacks, or logic flaws that can be
controlled by an attacker

v11 Business Logic
Ensure that a verified application satisfies the
following high level requirements:

• The business logic flow is sequential, processed in
order, and cannot be bypassed.

• Business logic includes limits to detect and prevent
automated attacks, such as continuous small funds
transfers.

• High value business logic flows have considered
abuse cases and malicious actors, and have
protections against spoofing, tampering,
repudiation, information disclosure, and elevation
of privilege attacks.

v12 Files and Resources

Ensure that a verified application satisfies
the following high level requirements:

• Untrusted file data should be handled
accordingly and in a secure manner

• Obtained from untrusted sources are
stored outside the webroot and limited
permissions.

v13 API Security

Ensure that a verified application that uses
RESTful or SOAP based web services has:

• Adequate authentication, session
management and authorization of all web
services
• Input validation of all parameters that transit

from a lower to higher trust level
• JSON and XML handling

v14 Configuration
Ensure that a verified application has:

• A secure, repeatable, automatable build
environment.

• Hardended third party library, dependency
and configuration management such that
out of date or insecure components are not
included by the application.

• A secure-by-default configuration, such that
administrators and users have to weaken
the default security posture.

jim@manicode.com

